Sparse Approximations in Spatio-Temporal Point Process Models

نویسندگان

  • Botond Cseke
  • Guido Sanguinetti
  • Andrew Zammit Mangion
  • Tom Heskes
چکیده

Analysis of spatio-temporal point patterns plays an important role in several disciplines, yet inference in these systems remains computationally challenging due to the high resolution modelling generally required by large data sets and the analytically intractable likelihood function. Here, we exploit the sparsity structure of a fully-discretised log-Gaussian Cox process model by using expectation constrained approximate inference. The resulting family of expectation propagation algorithms scale well with the state dimension and the length of the temporal horizon with moderate loss in distributional accuracy. They hence provide a flexible and faster alternative to both the filtering-smoothing type algorithms and the approaches which implement the Laplace method or expectation propagation on (block) sparse latent Gaussian models. We demonstrate the use of the proposed method in the reconstruction of conflict intensity levels in Afghanistan from a WikiLeaks data set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions - a crime case study

Many physical and sociological processes are represented as discrete events in time and space. These spatio-temporal point processes are often sparse, meaning that they cannot be aggregated and treated with conventional regression models. Models based on the point process framework may be employed instead for prediction purposes. Evaluating the predictive performance of these models poses a uni...

متن کامل

Sparse Approximate Inference for Spatio-Temporal Point Process Models

Spatio-temporal point process models play a central role in the analysis of spatially distributed systems in several disciplines. Yet, scalable inference remains computationally challenging both due to the high resolution modelling generally required and the analytically intractable likelihood function. Here, we exploit the sparsity structure typical of (spatially) discretised log-Gaussian Cox ...

متن کامل

Variational Gaussian-process factor analysis for modeling spatio-temporal data

We present a probabilistic factor analysis model which can be used for studying spatio-temporal datasets. The spatial and temporal structure is modeled by using Gaussian process priors both for the loading matrix and the factors. The posterior distributions are approximated using the variational Bayesian framework. High computational cost of Gaussian process modeling is reduced by using sparse ...

متن کامل

Running Head : SPATIO - TEMPORAL INFORMATION IN DYNAMIC FACES 2

A great deal of perceptual and social information is conveyed by facial motion. Here, we investigated observers’ sensitivity to the complex spatio-temporal information in facial expressions and what cues they use to judge the similarity of these movements. We motioncaptured four facial expressions and decomposed them into time courses of semantically meaningful local facial actions (e.g., eyebr...

متن کامل

Structured spatio - temporal shot - noise Cox point process models , with a view to modelling forest fires August 11 , 2008

Spatio-temporal Cox point process models with a multiplicative structure for the driving random intensity, incorporating covariate information into temporal and spatial components, and with a residual term modelled by a shot-noise process, are considered. Such models are flexible and tractable for statistical analysis, using spatio-temporal versions of intensity and inhomogeneous K-functions, q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013